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For classical lattice systems we prove rigorously a relation between the fluc- 
tuations and the relaxation times for a dynamics given by a detailed balance 
semigroup. In particular we give a rigorous proof of the conventional theory of 
critical slowing down. 
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1. I N T R O D U C T I O N  

For  the study of the approach  to equilibrium in classical lattice models the 
Glauber  dynamics (~) has become rather a theory than a model. Its essential 
feature is that  it describes transitions from one state to another  with a 
probabil i ty which is in correspondence to the one for its inverse transition. 
Mathematical ly  this proper ty  of a Markov ian  semigroup evolution is 
expressed by its self-adjointness with respect to the equilibrium state, which 
means that the transit ion probabilities are p ropor t iona l  to the Bol tzmann 
factor. This proper ty  is known as the condi t ion of  detailed balance. 

The main interest in these processes comes from their proper ty  of 
describing the approach  to equilibrium. (2) Here we are particularly 
interested in the characteristics of the relaxation to equilibrium under  these 
processes. It is expected by the convent ional  phenomenological  theories (3,4) 
that  one has an exponential  decay law to equilibrium. 
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In this paper we prove a rigorous relation between the fluctuations 
and the decay rate of physical quantities for systems satisfying the detailed 
balance condition. The proof is given for a large class of classical lattice 
systems. In particular we prove that the lifetime of an observable is gover- 
ned by the fluctuation of that observable. For equilibrium states of systems 
showing a phase transition this yields a rigorous relation between the 
critical exponents of the fluctuation and the lifetime. 

As an illustration we sketch examples of evolutions generated by spin- 
flips and exchange of the spins, and examples of magnetization and energy 
fluctuations. 

2. F O R M U L A T I O N  OF T H E  P R O B L E M  

We consider a classical system of particles attached to the sites of a 
countable set S. It includes the ordinary lattices with regular and irregular 
structure. At each site j e S we describe the particles by means of their 
phase space K, which we suppose to be a compact topological space. Given 
A a finite subset of S, denote by K A the product FIj~A/s where Kj is a 
copy of K attached to the site j e A. The space K A is the configuration space 
of the volume A. Denote by C(KA)  the set of real-valued continuous 
functions on KA. Then C(Ks) represents the algebra of observables of our 
system, it is the uniform closure of the set w A C(KA). The states of the 
system are given by the probability measures ~o on Ks and we use the 
notation: ( f )  = SKsfdco. 

Let F be a family {A } of finite subsets A of S. For each A e F, let LA 
be a map of C(Ks) into itself such that 

(i) LAf=O for a l l fE  C(Ks\A) 

(ii) For all A, LA is bounded. 

(iii) LA(f2)>~2fLA(f), feC(KA) 

LA(~ ) = 0 (unity preserving) 

(iv) VieS: ~, ]ILAII<oo 
A E F  
i E A  

(dissipativity) 

(1) 

(2) 

(3) 

(4) 

Now we define 

A ~ F  
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on the domain ~(L)={ fEC(Ks ) ] f sC(KA)  for some finite A}. If 
f e C(KA), then 

Lf = • LA, f 
A ' e l "  

A ' n A r  

and it is obvious that 

LA,f' 
A ' ~ F  

A '  r~AvaO 

~ IILA'fll 
A ' G I "  

A ' r ~ A # f b  

Y, {ILA'II Ilfll 
A ' ~ F  

A'  r~ A f-q5 

which is finite because of condition (4). 
The map L is said to satisfy the condition of detailed balance with 

respect to a measure co on Ks if for all f, g ~ C(Ks) 

(v) ( fLAg)  = ((LAf)  g) (6) 

holds for all A E/.(5,6) 
Let )fo~=L2(C(Ks), co) be the complex Hilbert space with a usual 

scalar product ( f  g ) =  ( fg) ,  then the map L, defined by (5), induces a 
^ A 

symmetric, negative definite, densely defined operator L. L is well defined 
because, let f e D ( L )  such that ( [ f l 2 ) = 0  then by (6) ( [ L A f l 2 )  = 
(fL2Af) <~ (1f[2)1/2( [L2Afl2),/2 for all A e F. 

Hence there exists a unique self-adjoint, negative definite extension 
(Friedrich's extension), again denoted by L, of [2. (7) Therefore 

7, =exp tL, t )  0 (7) 

is a well-defined strongly continuous semigroup of self-adjoint contractions 
on ~ leaving invariant the unit function 4. 

The semigroup (7) yields a dynamics of the system satisfying the 
detailed balance property with respect to a probability measure co. 

Now we are interested in the behavior of what is called the 
autocorrelation functions. This becomes in our framework the following 
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functions of time t: for each ~ E~o~ such that (~, 4 ) = 0  we study the 
function 

teN+ ~ f , ( t )  - ( ~ '  Tt~) 
(0, ~) 

Let {E(2)I 2 e  N+} be the spectral resolution of - L ;  then 

fo fo(t) = e ;~t dm0(2) 

where 

dm '2 '  d({k' E()o) ~) 
~ t ~ = - ( 7 , - s  

As usual the mean relaxation time r e is defined by 

;o r~ = dt f~,(t) = dm~,()~) 

and the mean relaxation constant v, by 

df = 2 dm~,(2) 
Vr --~-~ t=0 

(8) 

(9) 

(lO) 

(11) 

By convexity of the exponential one gets from Jenssen's inequality 

= f o e  ~ dmo(s YOU) 

Efo ~>exp - 2dm~,(2) t = e x p ( - v e t )  

Therefore 

(12) 

1 
zq,~>-- 

vq, 

In the following we relate for an observable its mean relaxation constant 
with its fluctuation. 
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3. C R I T I C A L  S L O W I N G  D O W N  

We consider a particular class of observables: let ~b be a map from the 
finite subsets of S into UA C(KA), i.e., X---, ~b(X), then for each subset A of S 
we construct the observable 

X ~ A  

Lemma 3.1. Let co be a state of C(Ks) and L a detailed balance 
generator with respect to c~ [see (7)] satisfying the condition 

sup ~ ~, [ILA[I ~<M< oo (14) 
j ~ S  k E S  A ~ F  

j , k ~ A  

then for each observable @~ (13), satisfying 

sup ~, ~ II~(X)ll = Q < oo (15) 
j e S  k e S  X ~ S  

j,k ~ X 

one has 

0 <~ -(q~ ~, Lq~ ~) <<. MQ 2 iA[ 

where [AI is the number of elements of A. 

ProoL Let 

aj, = ~ I/~(g)ll 
X ~ S  

j , k  ~ X 

bjk= IIL ll 
A C F  

j ,  k E  A 

1 
C/k =[~-~ z~(J) Z J(k) 

where 

z~(j) = {1 if j e A  
0 if j C A  

By definition c =  (cje) is a one-dimensional projection operator on 12(S) 
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and by (14) and (15), b =  (bjk) and a =  (ajk) are bounded operators on 
12( S), indeed 

Hall ~<sup ~ ]ajk I =Q<m 
j ~ S  kES  

Ilbll ~<sup ~ [bjkl <<.M< 
.]~S k ~ S  

Now 

I(O~,LO~)I ~ ~ ~ Y, II~(X)II II0(Y)II IILAII 
A ~ F  X c S  Y ~ S  

X ~ A ~  Yc~Av~q~ 
X ~ d v ~ b  Y ~A ~ f b  

<~A~r(j~A ajk)(/~ A a;k,) ]'LAI] 
ke-d k 'eA  

1 
= l a l  ~ ajkark, ~ [ILAH-~zj(k) zj(k') 

j,k,j',k' e S d e e  
j , j ' eA  

= Izll tr acab <<. IA] Ilall 2 Ilbll ~< Q2M Idl 

This proves the lemma. I 

T h e o r e m  3.2. Let co be a measure on Ks and 7, a detailed balance 
evolution with respect to 09 [see (7)], then for each finite subset A of S one 
has 

(OA, 7tI~A)-- <{~a>2 

where O~ is as in (13), M as in condition (14) Section 2, and ~b is as in 
(15). 

Proof. Using formula (12) with ~ = O ~ -  ( O ~ )  one gets 

( ~  A, 3) t ~  A ) -  (C~) A5  2 ( ~  A, L~D A) 

The theorem follows by Lemma 3.1. | 

Next we specialize to co being an equilibrium measure co~ at some 
inverse temperature fl = 1/kT. 

Suppose L is a generator of a dynamical semigroup given by a sum of 
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local ones as in (5). If L is supposed to satisfy the detailed balance con- 
dition with respect to o~, then L will depend on fl, we denote it by L~. 

Furthermore we are particularly interested in systems showing a phase 
transition at a certain temperature fl,., called critical temperature. 
Moreover we assume that the phase transition manifests itself by the 
occurrence of abnormal fluctuations when fl ~ tic, i.e., there exists at least 
one observable of the type as given in (13) such that the fluctuation 

lim < ( 0 ~ -  (OA>)2> =-g(fl) (16) 

exists for all fl in an interval U containing fl, and /~ r tic, and such that 
g(fl) diverges at /?  = tic. 

Moreover, we consider generators L~.A, A e F such that the bound M 
in (14) is uniform for a l l /~ �9  U. 

Corollary 3.:3. (Critical slowing down). Let c% be an equilibrium 
state of the system showing a phase transition at fl, of the type described 
above. Take fl �9 U, an interval containing tic, and let 72 = e'L~ be a detailed 
balance evolution with respect to c%; then 

lim i n f ( ~ ~ ) - - ( O s  MQ2tl 
~-~  < ( % -  <o~>)~> ~ g(/~) J 

where g(fl) is the fluctuation of O given by (16). In particular 

0~<Inf { - o  I cr �9 o r  MQ2 
'~ g(fl) 

or the spectral gap of L/3 is bounded by the inverse of the fluctuation of O. 
Hence if fl -~/~, we observe the critical slowing down of the autocorrelation 
function. 

Proof. The corollary is an immediate consequence of the theorem 
and the assumptions. | 

In the usual theories on critical slowing down one assumes the 
existence of the critical exponents 

7 _+ = lira 
T- -  T, ~O+_ 

Using definition ( 11 ) 

log g(fl) 
log I T -  7",.I 

(0~, La03)  
v~,~ <| = - < ( r  _ < a ,  7 ) ~ >  
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Assume that there exists e > 0 such that 

then using (16) 

l~ = lim ( ~ ,  L ~ )  > e (17) 

v~ = l ira v , ~ _  <r = l~/g(fl) 
A ~ S  

By Lemma 3.1, 1/3 is uniformly bounded and hence 

lira log v~ _ lim log g(fl) 
r r,~o_+ log I T -  T,.[ T-Tc~O+ log IT-- Tel - Y-+ (18) 

yielding a rigorous proof of what is called the conventional theory of 
critical slowing down. (3'4) 

We close the paper with some illustrations. Let S = ~v the cubic lattice 
in v dimensions and K =  {0, 1}, i.e., we have a lattice gas or a lattice 
occupied by spin-l/2 particles. Consider an interaction Hamiltonian of the 
type 

HA= E J ( l i - j l ) a , a : + b  ~, a, 
i , j ~ A  i ~ A  

where the a i are the spin variables and where the coupling constants satisfy 

Consider 

IJ(j)[ < oo (19) 
j ~ Z  ~ 

F =  2 ev and .Ck(k ~ ~v) 

the spin-flip transformation at the lattice site k e 7/v: 

%a~=ai if ivak 

=--cr~ if i = k  

Denote by 

h(rk) = lim "ckH A -- H A 
A ~ Z  v 

the relative Hamiltonian for the spin flip rk. It is well defined because of 
condition (19). Take 

L =  ~ Lj (20) 
j ~ v  
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where 

L k = e-(~/2)h(zk)(T k -- ~ ) 

then L defines the usual Glauber dynamics. On the other hand consider the 
set of all pairs (i, j ) ,  ( i C j )  of elements in 2 ~ and r~j the permutation trans- 
formation 

Again let 

% a j  = a~, zo.~7~ = a j ,  r~jak = ak if k r i, j 

h(ro) = lim r i i H  A - -  H A 
A ~ Z  v 

be the relative Hamiltonian for the transformation zijand put 

L= ~ F, L~,~+j 
i ~ Z v j E Z  v 

j ~ i  

where 

(21) 

with 2j >~ 0 such that Zj~ ;v 2j < oo. 
This example of L describes a generalized hopping process. 
Clearly the generators in the examples (20) and (21) and their sums 

satisfy the conditions (1), (2), (3), (4) and condition (14). 
Finally we give two physically relevant examples of observables 

satisfying condition (15). First choose in formula (13): 

~b(X)=a, if X = { i }  

= 0 otherwise 

then ~b A is the (local) magnetization in the volume A. 
Secondly choose in formula (13) 

~b(Jf)=ba, if J f = { i } ; b ~  

= J ( [ i - j [ ) ~ i a  j if X = { i , j } ; i ~ j  

= 0 otherwise 

then ~ is the (local) energy in the volume A. Obviously these two obser- 
vables satisfy condition (15). 



272 Alicki, Fannes, and Verbeure 

For the example (20) of the generator L~ and for the observable of the 
magnetization, by a straightforward computation one observes the validity 
of the condition (17). Therefore the result (18) on the critical exponents is 
valid in this case. The same holds for the generator L being a sum of (20) 
and (21) while the spectrum of (21) alone has no gap at zero. 
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